Machine Learning System for Fraud)
Detection. A Methodological Approach e
for a Development Platform

Salma El Hajjami, Jamal Malki, Mohammed Berrada, Harti Mostafa,
and Alain Bouju

Abstract The democratization and massification use of credit cards lead inexorably
to a high number of fraudulent transactions. Generally, the fraud detection is part
of the anomaly detection problem. In this field, current approaches and techniques
are constantly looking for optimized solutions to detect anomalies. Faced with a
massive and growing data volume, these methods are put to the test, and thus lead
to a large number of undetected anomalies. Real time fraud detection requires the
design and implementation of scalable techniques capable of ingesting and analyzing
massive amounts of data continuously. Recent advances in storage, data analytics
processing, and open-source solutions open up new perspectives in the anomaly
detection field and in particular fraud. In this article, we are interested in the design of
afraud detection system (FDS) based on open-sources Big Data technologies. Thus, a
general methodology is proposed based on the formalization, the implementation and
the technical design of a platform for fraud detection. The formalization part consists
of four layers: distributed storage, data processing, model building, and finally the
model evaluation. The implementation part uses Spark distributed data processing
system. In particular, we are based on its framework dedicated to machine learning,
called MLIib. The technical design part of the platform is based on the latest Big
Data technologies such as Hadoop, Yarn, Livy etc.

Keywords Machine learning + Anomaly detection - Fraud detection - Big data -
Spark and Hadoop platforms

Projet UE-FEDER PLAIBDE https://plaibde.ayaline.com

S. El Hajjami (<) - M. Berrada
TASSE Laboratoire, ENSA, USMBA, Fes, Marocco
e-mail: salma.elhajjami @usmba.ac.ma

J. Malki - A. Bouju
L3i Laboratoire, La Rochelle Université, La Rochelle, France

H. Mostafa
LIMS Laboratoire, FSDM, USMBA, Feés, Marocco

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 99
S. Motahhir and B. Bossoufi (eds.), Digital Technologies and Applications,

Lecture Notes in Networks and Systems 211,

https://doi.org/10.1007/978-3-030-73882-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-73882-2_10&domain=pdf
https://plaibde.ayaline.com
mailto:salma.elhajjami@usmba.ac.ma
https://doi.org/10.1007/978-3-030-73882-2_10

100 S. El Hajjami et al.

1 Introduction

In recent years, the volume of credit card transactions has increased considerably
due to the popularization of their uses, the rapid development of associated services,
such as e-commerce, e-finance and all mobile payments. The large-scale adoption of
credit card coupled with the development of different use cases where transactions
take place without rigid verification and supervision inevitably result in large losses
[1]. In this area, it becomes necessary, even crucial, to immediately process the
collected data to detect any potential fraud. However, traditional detection tools
are unable to handle the captured data volume [2]. Therefore, they cannot detect
anomalies and threats. It has therefore become essential to overcome the bottlenecks
of existing techniques by using a new generation of artificial intelligence approaches,
such as those based on machine learning. These approaches must work closely with
techniques for data processing, known as Big Data. They must also provide near
real-time responses.

Ultimately, we believe that Machine Learning (ML) models can provide a reliable
solution to the anomaly detection problem and therefore its application to the fraud
detection [3]. Depending on the needs and scope of ML, there are several scenarios,
how these models can be constructed and applied. Recent work in the field of ML
highlights two kinds of important platforms: development platform and deployment
platform.

Development platforms dramatically reduce the time and cost of building ML
models. They guarantee the organization of all levels of maturity of these models.
They can be out of the box or tailor-made, based on open-sources or commercial
software. Some development platforms can act as model deployment platforms as
well, and in a few cases, model life cycle management platforms, but their core is
running model building pipelines. The deployment platform brings the models to
the production environment. Suppose an ML model has been created and evaluated
on a given development platform, the next step is to use that model in a production
application. The latter can be a simple web application, embedded in an IoT device,
or a service or micro-service forming part of a complex architecture. This is the role
of the deployment platform.

The two platforms are linked by what is known as the machine learning pipeline.
Indeed, the life cycle of a model should not stop at the development and evaluation
stage. It is put into production and then returned to the development stage as much
as possible to be refined and improved.

In this work, we present a methodology for building ML models in a development
platform approach based on open-source software. This platform dedicated to a fraud
detection system (FDS) brings two important contributions:

— A fraud detection methodology which contains most of the design ideas common
in the latest FDS, which greatly facilitates the integration of detection algorithms
into the workflow.

— A four-layer framework that includes a distributed storage layer, data processing
layer, model building layer, and finally model evaluation layer.

Machine Learning System for Fraud Detection ... 101

— A development platform whose central core is based on Hadoop and Spark. With
these technologies, we are able to build a scalable and reliable system.

The remainder of the paper is organized as follows. In Sect. 2, data and system
challenges for fraud detection are described. Section 3 describes our methodology
for building ML models for fraud detection. The results of the experimental evalua-
tion are illustrated in Sect. 4. Section 5 gives all the details about the development
platform. Finally, conclusion and future work terminate our article.

2 Fraud Detection: Data and System Challenges

The design of an effective, real-time, and scalable based FDS is subjected to several
data and system challenges enumerated as follows [4-7]:

— Data imbalance: generally, fraudulent transactions represent less than 0.05\% of
total transactions. This ratio results in the very imbalanced dataset. A good FDS
should be able to handle asymmetric distributions of data.

— Data overlap: some fraudulent patterns behave like normal ones. A good FDS
should be able to detect fraudulent transactions that mimic legitimate transactions.

— Concept Drift: FDS targeting fraudulent behavior suffer from the fact that in the
real world, the profile of normal and fraudulent behavior changes over time. So, a
model that performs well over a period of time can quickly become obsolete and
produces inaccurate predictions. Therefore, a good FDS should be dynamic and
able to adapt to changes in fraudulent patterns.

— Evaluation metric: evaluation metric used for fraud detection techniques should
be chosen with care. Indeed, some measures such as accuracy are not suitable for
asymmetric distribution.

— Misclassification cost problem: cost of misclassifying each transaction varies.
Fraud detection is a very cost sensitive area. Generally, undetected fraudulent
transactions are much more serious and costly than the detection of normal
behavior as fraud. Therefore, a good FDS should prioritize transactions with
a higher misclassification cost.

— Lack of Real-Time FDS: most of the existing FDS reported in the literature work
on archival data to drive future security policies. The fraud must be detected and
blocked-in real time to avoid future fraud.

3 Machine Learning Methodology and Application
to Fraud Detection

The fraud detection is a Big Data problem. Our ML methodology and application
to fraud detection takes into account all the data properties intrinsic to a Big Data

102 S. El Hajjami et al.

system. It includes four main layers: data collection and storage, data processing,
model building and evaluation before pre-production.

3.1 Data Collection and Storage

This layer consists of collecting data transactions made by customers. In their
raw state, they contain information classified as confidential. The vast majority of
payment systems provide interfaces to access transaction data. Legal data protection
rules must be observed.

The quality of ML models is measured, among other things, by the quality of the
data from which they are built. Therefore, knowing how to use good data collection
practices is essential to develop high performing models. The data must be, as much
as possible, error-free and contain information relevant to the task at hand [2].

3.2 Data Processing

Data processing is an important and time-consuming task due to its importance
to overall performance. The purpose of data processing is to create what is called
prepared data. Data processing includes various operations:

1. Data cleaning: deletion or correction of records containing corrupted or invalid
values, or for which a large number of columns are missing.

2. Data transformation: converting a numeric characteristic to a categorical char-
acteristic and converting categorical characteristics to a numeric representation.
Some models only work with numeric or categorical characteristics, while others
can handle characteristics of different types.

3. Feature Selection: selecting a subset of the input features for training the model
while ignoring irrelevant or redundant ones.

4. Data Sampling: sampling the dataset before training the predictive model in
order to have more balanced data.

3.3 Model Building

Model development begins by partitioning the datasets into one dataset used to train
a model, another dataset used to test the trained model. This splitting of the data
ensures that the model does not remember a particular subset of data. There are two
steps in a learning model building:

Machine Learning System for Fraud Detection ... 103

Table 1 Kaggle credit card

; Transactions | Majority class | Minority class | Columns
fraud dataset details jorty Y

284 807 284 315 492 31

— Training phase: mainly consists of the building or adjusting a model. The funda-
mental goal is to learn a pattern of trends that lend themselves well to generaliza-
tion to new data instead of simply memorizing the data he was able to see during
his training.

— Test phase: once the model is trained, it is important to check whether it behaves
correctly on new examples that are not used for training the model. To do this, the
model is used to predict the response on the test dataset. Then, the predicted target
is compared to the actual response to measure the performance of the model.

3.4 Model Evaluation

It’s important to test, measure and monitor the performance of a predictive model. We
must then define measures to be used for performance evaluation. The assessment
metrics used depends on several factors. Such as, the task of modeling (classification,
regression or segmentation), the context of the problem we are trying to solve as
well as the data distribution. These metrics are also used to compare the model’s
performance and select those that give the best performance.

4 Credit Card Fraud Detection Use Case: Experimentation
and Evaluation

4.1 Data Collection

For data collection, we use the Kaggle Credit Card Fraud Detection dataset' to
illustrate these different steps. It contains the transactions carried out by credit card
during two days of September 2013 by holders of European cards. The Table 1
provides statistics for the dataset and shows that the minority class (fraud) accounts
for 0.172% of all transactions. Therefore, this dataset is very imbalanced [8]. It
contains 31 digital features. Because some of the input features contain financial
information, the PCA transformation of 28 digital input features (named V, ...,
V,s) was performed due to privacy concerns. Three of the given features have not
been transformed. Time feature displays the time between the first transaction and
each other transaction in the dataset. The Amount feature is the value of the amount

! Anonymized credit card transactions labeled as fraudulent or genuin From Kaggle https:/www.
kaggle.com/mlg-ulb/creditcardfraud.

https://www.kaggle.com/mlg-ulb/creditcardfraud

104 S. El Hajjami et al.

spent in a single credit card transaction. The Class feature represents labels and takes
two values: value 1 for fraudulent transaction and value 0 otherwise.

4.2 Data Processing

During the processing phase, we proceed to remove missing data. Then, it was
analyzed and all features except Amount and Time were scaled using the PCA
transformation technique. Therefore, the Time and Amount columns are scaled and
normalized to ensure consistency.

For selection features, we are only interested in data features that are able to
separate the two classes (fraudulent, normal). Visualization techniques can be helpful
in this process. Consider the example shown in Fig. 1 showing the class distribution
for some features of our dataset. We can see for V;; a significant divergence in the
distribution of the two classes. It is therefore a feature with high predictive power. We
therefore keep it when building models. Similarly, we can see for feature V ;3 that the
distribution of normal transactions (majority class) corresponds to the distribution of
fraudulent transactions (minority class). This feature cannot effectively contribute to
the separation between the two classes, we eliminate it from the dataset. We carried
out this process for all the 28 features. As a result, 11 relevant features were selected
for our experiments: Vj, V4, V9, V]O, Vu, V12, V14, V16, V17, V[g and V19.

The main difficulties are the skewness and data overlap in fraud detection
cases. Our goal is to correctly classify the fraudulent transactions. So, we use
One Side Behavioral Noise Reduction (OSBNR) [9, 10] as a sampling approach.
This approach manages behavioral noise in order to improve the classification of
fraudulent transactions.

Fig. 1 Class distribution histogram on some features

Machine Learning System for Fraud Detection ... 105

4.3 Model Building

Since there is no rule of thumb for dividing a data set into training and test sets,
we choose the 70/30 rule for training/test sets. Several studies reported Random
Forest and Multilayer Perceptron to get the best performance [1, 3, 11, 12], this is
one of the reasons we are adopting Random Forest and Multilayer Perceptron in our
experiments:

— Random forest (RF) is an algorithm that consist of many decision trees. This
algorithm works best when there are more trees in the forest. Each decision tree
in the forest gives results. These results are merged in order to obtain a more
precise and stable prediction [13].

— MultiLayer perceptron (MLP) is an artificial neural network with direct action
which is made up of at least 3 layers of nodes: entry layer, hidden layer and exit
layer. Each node uses an activation function. The activation function calculates
the weighted sum of its inputs and adds a bias. This allows us to decide which
neuron should be removed and not taken into account in the external connections.

4.4 Model Evaluation

Various metrics can be used to measure the predictive accuracy of a model. In our
case, the major challenge is to tackle the imbalance problem, since legitimate trans-
actions are much more numerous than fraudulent transactions (less than /% of total
transactions). This problem often leads to extremely high accuracy where a model
can reach up to 99% of the prediction accuracy, ignoring the /% of minority class
cases. In other words, accuracy does not reflect reality in this data imbalance case.
The ML model performance is evaluated using AUC (Area Under The Curve)
of the ROC Curve (Receiver Operating Characteristics) [14]. The ROC curve is
generated by plotting the true positives rate TPR, against the false positives rate
FPR, on all decision thresholds. The true positive rate TPR is the proportion of
real positives (fraud) that are correctly identified as the positive class, and the false
positive rate FPR measures the proportion of real positives (fraud) that are wrongly
classified. AUC (1) is a concise measure of the performance of the ROC curve with
a single value between O and 1, where a perfect model has a score close to 1. In
addition, AUC has been shown to be effective for class imbalance [14, 15].

AUC = (1 + TPR — FPR)/2 (1)

106 S. El Hajjami et al.

Fig. 2 AUC results for MLP [ase e o e Con

eeeeeeeeeeeeee Case (70%30%)
Case (60%,40%)

J
3

WP WLP.CNN WLP.ENN MLP AKNN WLP RENN WLP TL _ WLP.0SS WLP NGR MLP_OSBNR

gggggggggggg

Fig. 3 AUC results for RF e P —

g, ReeventFestures Case (10%:30%)
Case (60%,40%)

p

e N s
/ / Fﬁik\\/

J

AUC Motric

AF RFCNN RF.ENN AFAKNN AP RENN RF.TL AF.OSS RF.NCA RF_OSBNR

ML Models used

4.5 Results Analysis

Figures 2 and 3 show some results analysis done for both MLP anf RF models
using the AUC metric. They also show the model’s performance of a new approach
called OSBNR. In~\cite{Salma2020b,el2020machine }, MLP and RF algorithms are
combined with different resampling methods to study the performance of the resulting
ML models.

5 ML Model Development Platform

5.1 General Architecture

Horizontal scaling ensures the platform profitability when data and processing
requirements vary between models. Adding more machines to a cluster would not
be of much value on its own. What we need is a system that can take advantage of
horizontal scalability and that runs on multiple machines seamlessly, regardless of
the number of machines in the cluster. The choice of a distributed system for the ML
model development platform is then necessary because it operates transparently on
a cluster of machines and automatically manages the necessary resources. Figure 4
shows our cluster formed by a master node and three slave nodes. The cluster is

Machine Learning System for Fraud Detection ... 107

Fig. 4 General architecture _____MasterNode | Worker Nodes
of the ML model | 1
! [Yarn Hadoop
development platform : i 14| Node | [container| Spark Executor Data
: ' /| |Manager Node
Yarn !
Ressource ' 3 App Master Hadoop
Manager o N Data
" Yarn Driver Node
Node | |Container| Spark
Hadoop Manager Context
Name
Node
Yarn Hadoop
Node (Container| Spark Executor Data
Manager Node

managed by a private cloud-type platform within the L3i laboratory as part of the
FEDER-PLAIBDE project?. It is based on:

Operating system: Ubuntu-16.04.3-server-amd64
— Hard disk: type SSD 500 Go

Processors: 16 Go de RAM (4 sockets, 4 cores)
Network: 2x10 Go SFP +

5.2 Distributed Data System

In this design, we made the choice of data storage in raw format. Thus, the system
does not depend on any data model. It is therefore natural that the choice of Apache
Hadoop Distributed File System (HDFES) is necessary to manage our distributed
data system. HDFS is a well-known example of a distributed file system in the big
data ecosystem. In HDFS, we use a «master/slave» architecture consisting of a single
NameNode which manages the distributed file system and several DataNodes, which
generally reside on each node of the cluster and manage the physical disks attached
to this node as well as data that is stored physically.

5.3 Distributed Treatment System

In our ML model development platform, we use Apache Spark. It is a versatile
distributed processing engine capable of handling large volumes of data. The versa-
tility of Apache Spark is that it is suitable for a wide variety of large-scale use cases.
In this work, we are particularly interested in its machine learning library called
«Spark ML».

Zhttps://plaibde.ayaline.com/

https://plaibde.ayaline.com/

108 S. El Hajjami et al.

Spark uses a «maitre/esclave» architecture with a central coordinator called
«Driver» and a set of executable workflows called «Executors» located on different
nodes of the cluster. Each application written in Apache Spark gives rise to a pilot
program or «Driver». It segments a Spark application into tasks which are then parti-
tioned between the worker nodes in the distributed cluster. The pilot program also
creates a SparkContext that tells the application how to connect to the cluster and its
underlying services. The slave nodes are where the computational processing phys-
ically occurs. Typically, they are located on the same nodes where the underlying
data is available. These nodes generate processes called «Spark Executor». They
are responsible for performing computational tasks and storing locally cached data.
Executors communicate with the pilot program to receive scheduled functions which
are then executed.

5.4 Spark ML Algorithms

Spark ML is an essential software brick of our ML model development platform. It
offers all the services dedicated to the implementation of these models. In Apache
Spark, can distinguish two APIs:

— Spark ML: based on the DataFrame API. It is a distributed, column-oriented data
structure suitable for learning algorithms.

— Spark MLIib: based on RDD API (Resilient Distributed Datasets). This is a
distributed, object-oriented data representing data.

As part of our ML model development platform, we use Spark ML. At the heart
of it are several layers of software for different services.

5.5 Integrated Development Environment

In our ML model development platform, we use a development environment based on
Jupyter Lab. It is a web application for recording the entire process of development,
testing, evaluating and documenting ML models. The Jupyter product was originally
developed as part of the IPython project. It allows interactive development in several
languages. The name Jupyter itself is derived from the combination of Julia, Python,
and R. Our development environment provides three cores:

— PySpark: for applications written in Python?2.
— PySpark3: for applications written in Python3.
— Spark: for applications written in Scala.

Machine Learning System for Fraud Detection ... 109

6 Conclusion and Future Work

This work presents a machine learning methodology and a development platform.
We presented the fraud detection problem and approached its resolution using an ML
approach. Also, we showed that this approach requires the design and implementation
of an adequate platform. The presented solution is based on open-source solutions
from the world of Big-Data. Our future work covers other aspects of ML modeling
and deployment platform.

Acknowledgment This work is carried out thanks to the support of the European Union through
the PLAIBDE project of the FEDER-FSE operational program for the Nouvelle-Aquitaine region,
France.

References

1. Hajjami SE, Malki J, Berrada M, Bouziane F (2020) Machine learning for anomaly detection.
Performance study considering anomaly distribution in an imbalanced dataset. In: Cloudtech
2020. IEEE

2. Roh Y, Heo G, Whang SE (2018) A survey on data collection for machine learning: a big data
- Al integration perspective. arXiv:abs/1811.03402

3. Dal Pozzolo A, Caelen O, Le Borgne YA, Waterschoot S (2014) Bontempi G (2014) Learned
lessons in credit card fraud detection from a practitioner perspective. Expert Syst Appl
41(10):4915-4928

4. Maes S, Tuyls K, Vanschoenwinkel B, Manderick B (2002) Credit card fraud detection using
Bayesian and neural networks. In: Proceedings of the 1st international Naiso congress on neuro
fuzzy technologies, pp 261-270

5. Sahin YG, Duman E (2011) Detecting credit card fraud by decision trees and support vector
machines

6. Adewumi AO, Akinyelu AA (2017) A survey of machine-learning and nature-inspired based
credit card fraud detection techniques. Int J Syst Assur Eng Manage 8(2):937-953

7. Puh M, Brki¢ L (2019) Detecting credit card fraud using selected machine learning algorithms.
In: 42nd international convention on information and communication technology, electronics
and microelectronics. IEEE, pp 1250-1255

8. Dal Pozzolo A, Caelen O, Johnson RA, Bontempi G (2015) Calibrating probability with
undersampling for unbalanced classification. In: IEEE symposium series on computational
intelligence. IEEE, pp 159-166

9. Hajjami SE, Malki J, Bouju A, Berrada M (2020) Machine learning facing behavioral noise
problem in an imbalanced data using one side behavioral noise reduction: application to a fraud
detection. J Comput Inf Eng

10. Hajjami SE, Malki J, Bouju A, Berrada M (2020) A machine learning based approach to
reduce behavioral noise problem in an imbalanced data: application to a fraud detection. In:
International conference on intelligent data science technologies and applications (IDSTA).
IEEE, pp 11-20

11. Bhattacharyya S, Jha S, Tharakunnel K, Westland JC (2011) Dataminingforcredit card fraud:
a comparative study. Decis Support Syst 50(3):602-613

12. Dal Pozzolo A, Boracchi G, Caelen O, Alippi C, Bontempi G (2015) Credit card fraud detec-
tion and concept-drift adaptation with delayed supervised information. In: International joint
conference on Neural networks. IEEE, pp 1-8

http://arxiv.org/abs/abs/1811.03402

110 S. El Hajjami et al.

13. Breiman L (2001) Random forests. Mach Learn 45(1):5-32

14. Bekkar M, Djemaa HK, Alitouche TA (2013) Evaluation measures for models assessment over
imbalanced data sets. J Inf Eng Appl 3(10) (2013)

15. Jeni LA, Cohn JF, De La Torre F (2013) Facing imbalanced data-recommendations for the use
of performance metrics. In: 2013 Humaine association conference on affective computing and
intelligent interaction. IEEE, pp 245-251

